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THEORETICAL AND EXPERIMENTAL ASPECTSiOF THE SHOCK STRUCTURE PROBLEM
by

Hans W. Liepmann¥*, Roddam Narasimha** and Moustafa Chahine*** ..

I. INTRODUCTION AND SUMMARY *

. There does not yet exist a general, reliable theory of the

flow of rarefied gases, bridging the gap.between simple free
molecular flow methods and the Navier-Stokes tﬁeory. It is clear
today'thatan essentiai'improvement of the range of applicability
of the Navier-Stokes équaﬁions cannot be expected from the higher
approximations in the Chapman-Enskog procedure but that different
.methéds of finding approximate solutions of the Boltzmann equation#'
are needed. The_shbck wave struéture problem is one of the best e
test cases for such attempts because it is - realistic case, émenable,
to experimentation, and'simplé enough to expect that in the future
an exact solution of the Boltzmanp equation can be obtained.

' The present paper.discusses essenéiaily recent results

. . he
obtained by us from an exact numerical solution of the Bhathagar-.

Gross-Krook model. Short discussions of the Navier-Stokes and
Mott-Smith theories as well as of recent experimental work are
included. The.main'conclusions reached are the foilowing:

i.) The B-G-K-model is capable of describing the essential
features of the shock layer and leads to reasonabiy,accurate
numerical values for the measurable variables.

ii.) A comparison of the Chapman-Enskog approximation applied

to the model and the exact solution shows that useful convergence
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of the C-E series requires stress to pressure ratios, ¢/p, less
than_0.2/ Corresponding to shock Mach nunbers of less than about 2.'
iii.) The distribution function within the layer is bimodal, exhibits o
the gradual change from the molecular beam-like behavior ahead to o
a Maxwellian distribution behind.the shock. The effect of the fast _‘.
molecules is noticeable even many mean free paths behind the shock;
iv.) The flow is nearl&flocally adiabatic. That is, the total

enthalpy is constant to witﬂwg few per cent.

II. LOCALLY ADIABATIC FLOW

The general equatiohs of motion for the flow within a shock
wave (Fig. 1) can be reduced to a single one, the momentum equation,
if one assumes the flow to be "locally adiabatic”, i.e., that the

heat flux g balances everywhere the work done by the stress <Tu.

1

For "locally adiabati¢ flow" the total enthalpy H = h + %-uz. is
_ ' > - /
constant since e geus iy Cginsnts’en ””[7 »ates . A
H-H, = Tu-q. (t}

Within the Navier-Stokes theory pne‘can easily give an upper boung.: ',,,H '

for the maximum total enthalpy variation in terms of the Prandtl

-
)

number Pr:

H - Hy o B-- 3/4 3. _ ‘
—H } < DR (4.

1 max

In kinetic theory.locally adiabatic flow requires a not very
stringent relation betWeen the first three moments of the
distribution function.. Computations for the B-G-Kvmodél)shown in
Fig. 2 together with the N—S_resultﬁ,demonstraté the comparatively

small deviations of H from Hy. The B-G~K model is usally thought

\J



. ' " mz
to imply a Prandtl pumber of unity; this is COrrecﬁkln-the N-S
L g ky & )

limit, ch-numbess g » zu! ) /o

For locally adiabatic flow Afdﬁ? A hhxwy/'*’ 7,

Tu = M !—Z}l- (u - uy) (u - u,) =q | (3}

and the characteristic,paramefer TYp,can be given explicitly (Fig. 3)-.

A. The Navier-Stockes theory

The Navier-~Stokes equations are obtained from the Chapman-
Enskog (C-E) approximation‘'if terms proportional to é are kept.
Rapid convergerice of the C-E series is thus a sufficient condition

for the validity o the N-8 equation. The terms of the C-E.

. o/e'/u/r( & P /:f,é,,/;, Wéw}‘c 2 - 3 mw;«'fé
series a*e-howeverhqﬁ~the form S-E_ and E'M c and hence there ¢

Indeed for any Mach number there exist)at large ¢ ,regions for

which the'C-E distribution function is negétive. -However fhis
impossible region in the distribution function does not neceésarily
contribute appreciably to the moments like 4, u,and T. A
comparison of the C-E series applied'to‘the B.G.K model and the

exact Qolution indicates a limit of g- F Q.2 for reasonable
convergence of the series. A'glance at Fig.gﬁﬁthen shows that one

can expect the N-S solution to apply to the'complete shock profile fof
shocks of Mi < 2.0 approximately,.howeve: for strong shock wévesd

the N-S theory should be applicable only'ﬁo a relatively smallvpo;tion '
of the shock profile. In our first paper Cw%{ﬁﬁﬁun ETacinha &
Chahine'?f??) we expected the N-S theory to hold for tﬂz-;kole

subsonic portion of fhe shock profile, i.e., up to %; values of

- /
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0.6 or so. The more precise recent computations reduce the |
expected applicability of the N-S equations and lead to maximum
density slope thickness for Strong shocks approximately 25% |
larger than the corresponding N-S value, not only 10% as believed - .
in our'first paper. : .

The precise shape of the distribution function is not given
correctly by the C-E exﬁansion,for any Mach number. Besides the
occurrence of negativé regions, the C-E distribution function, due
to the non-uniform éon?ergence of the method,fails to account
properly for the fast molecules with long free patﬁs. This leads
to an asymptotic approach of, e.g., u(x) to its equilibrium value uy
whicﬁ'glubarsky }ﬁgéﬂ),has first show?)is bf~tHe~form ﬁ% ~ exp —#f/3
<K u

rather than ug, ~ exp l-x}. Since u, = u at least

NS NS’

for weak shocks, this behavior is irrelevant for comparison with

experiments but of considerable conceptual importance.

B. The Method of Mott-Smith

(43 | | N |

Mott~Smith was the first to recognize the bimodal character .

of the distribution function within a shock wave. He proposed an
approximate solution offthe Boltzmann equétion by assuming f to

be of the form_

f = [l - V(x)j Fy +’ V(x)F2 ' 4 1%)
Y(x) to be determined by a Gialerkin-type technique. Mott-Smith’

methqdkwas certainly an important step in the right direction;

]

however as he himself cleariy recognized, the method is limited by



the arbitrariness in the weighting function used in evaluating Y(x).

Subsequently more elaborate work by Rosen (iyé? ), Gustafson (}?Q?) and

~Muckenfuss (}/75) dosnot eliminate the arbitrariness in evaluating y(x)

Sakurals(qu73 attempt to prove that the N-S method leads to an

asymptotically valid solutlon of the Boltzmann equatlon for 1nf1n1te

Ay acires. th Cagledue vovgrtid Yeedsn, L’
Mach number, has also not been successful. Today 1%~is—aea;ly—peee¢b&e

hav #rtceide r/‘L /c‘&.z.é‘
[to chose >)(x) for a best fit w1th experlments. However this

would be sensible only if the Mott-Smith approximation couid then
be developed into a general method in rarefied gas flows. Such an

extension does not seem possible.

C. The Bhatnagar-Gross-Krook theory

The model equation we consider is the one proposed by
Bhatnagar, Gross & Krook (j4°%). For one-dimensional flow it

can be written : . .

o

"xafc = an (F - £) (s)

Equation (J) is nonlinear in spite of its appearance, as
‘the pafameters in the local Maxwellian F are‘all moments of the

unknown f. We have computed an exact numeriéal solution of (¥)

satisfying the correct boundary conditions for a shock wave, for a-

gas with a realistic viscosity-temperature relation. For the:
computation it is preferable to convert (5):formally into the

integral equation
N x .

: ' X,
> = AnF - An dx" T 4o
f(x, vy, Vo Ve % 0) j 5 exp[ / v dx
x ' X
) /oo | x
This is now solved by an iterative method whose principles are

as follows: A first guess is made at the parameters n, u and ]7

IS

(¢)



‘(as functions of x) appearing in F on the right hand side; . ' :
integrationiwith'respect to x gives £, and further integration
with respect to v .givés new values for_P, u and ‘7-. These
" are now used to generate the next approximation to F, and so
on, till there is no sensible variation in the final'results.
In our computations we used the Navier-Stokes sdiutidn for shock - ,é
structure to provide the first guéss. Details of the actual

computations, the convergence of the scheme and the results obtained

1
were presented héthw*’mggand iarasimba (1958).

ﬁ%@ computatians reusal-tho~following-features—ofrshock—stouchinred !
For weak shocks (say M' < 2.0), the exact so;ution hardly differs - ,-_?
from the Navier-Stokes which is thus.an adequate approximation. For | é
sttongef shocks the profiles deviate more and more from the Navier-

Stokes, especially on the cold side, where a long tail develops

rapidly. On the hot side the iteration converges relatively slowly,

and the departure from Navier-Stokes is less marked. The thickness

BATES 4 SR s s o rt S FCT At

of the shock,based on the maximum density slope, is about 25%.larger v

TRARY T

than the Navier-Stokes value at.a Mach number of lQ(anda viscosity
law p “ T"with &= .816). The,asyﬁmetry in the temperature prbfile L
is very'much more brénounceﬁ than in the density profile. '

We can give a heuristic explanation of these results by . , @
. considering the form of £ as given by'(6). Crucial in | : !

" determining this is the magnitude of what may be called the

"sampling distance", {?= vx/An, appearing in the exponential:

As v, takes all possible values, so does 27, but all

-
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* velocities v do not contribute equally to the moments, in which
~we are primarily interested, 4'::::“ . _.~- . 1In general,
" the velocities Vg which confribute most to the first few -
vmoments may be expected to be of order u. On the hot side of
the shock, the Mach number is aiways O(l), or u = o(c). Henée
the characteristic sam'pl.ing distance is Z-z'“ 32/A2n2', whiéh is
proportional to the mean ffee path /1 . Nowéthe;e;is—an~measen~%e~‘
expeet—that‘The ‘gradients within the shock are relatlvely small
on the hot side over a mean free path cmzzﬁﬂ%%q.so if F varies

slowly over the distance nég, we may write, using an obvious

asymptotic technique,

- 2
: v v 2 .
£(x) = F(x) - == g—g + Xn’i i—bzl- (7/

This is,.of course, just the Chépman—Enskog series, the second
term corresponding to Névier—Stokes, the third to Burnett, etec.
Iteratipg on the Navier-Stokes solution as described earlier,

we see that the_departures noticed on the hot side could possibly
be due to the higher order térms of (7)., especially the

Burnett tﬁims. The fact that the iteration scheme is eésentially
evaluating higher‘derivatives of F is perhaps partiy responsible
for the relatively slow con&ergence noticed on the hot side. Thg

on .the hot side of

typical length scale of the profile
the shock remains Jﬁ o to a first approximation.
| In a weak shock the Mach humber M = 0(l)everywhere; and the
argumenf,made above for the hot side of a strong shock>applies all -
through a weak shock.'
The large deviations.ﬁoticed on the cold side of strong

shocks seem to be due to a different mechanism. Here u = O(M l)'
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and the characteristie samplipg d.istan.cel Zl o~ ul/Alnl ~ MlJ\-l
becomes very large as Ml-ara @, we see that f 1is now

determined as an integral over the flow and cannot possibly be } -
described in terms of local derivatives (as in (7)). Also we
may expect the charac'teristi\é length scale on the cold side to
become Z 17 for, if we should put in for F the Navier-Stokes
values (whose sclale would be Al/Ml) , the attenuation factor
multiplying F in (¢ ) would inunediately "smudge" it over a
distance “/l" ~We conclude that the characteristic dimeﬁsion of
the 'tail' is &; ~ M; Al' and not ./ll/Ml' as in the N-S theory.

A crude measure of the asymmetry of the profile is thus

" the ratio

5, L T Y Ay . )
If we take [ ~ Tw, and define the mean.free path as ./L-vp./f-c;
we have '
. | 0 =%
o) T
-1 (21 ) . 2(1l-w)
5, ~ Ml( T ) ~ M ‘

+

‘recalling that 'T2/Tl~ M12 for large Ml.:;DIt is easy to show (frm ept.

that the characteristic scales in the Navier-Stokes solution are
proportional to the respective viscosities on either side of the '

shock; hence ' D



Since for real gases %(w ¢ 1 (61/62)N‘ s —>» 0, as M, —>®

whlle for the B-G-K model (B /6 ) = ©. Thus the Nav1er—Stokes

a/?/tfm ¢ o/w,i Cﬂ-n/,{;;,,, ddrc:/:r l‘"/
profile dips—suddenty—into the upstream s;de/ whewreas the B-G-K

exact solution reaches the asymptotlc state in a long, gradual
tail as shown in Fig. &§! 1t is furthér interesting to note that

the B-G-K tail becomes weaker as &+ 1, as noted in Figure 6.

This result for the rétio of the length scales 61/52 may be

compared with the ratio of the appropriate free paths K.(ul)/ﬂ\(za).
For an intermolecular potential of the . form ?9(r) ~ r °, the
free path /{ depends on the collision velocity v 'obviously like

A (V) e~ s Hence

| 4/m ok
A (83) 2 1 T/

and the ratio is thug/for large Ml)nearly independent of M, .

OllHﬂ

-

and only weakly dependent on & . The B-Giggmodel (except for the
case of Maxwell molecules, i.e., W = 1) isﬂigﬁély to exaggerate
the tail; the abrupt'dip given by the N-S solution on the other hand
is certainly unrealistic and hence any solufion of the Boltzmann '
equatioﬂ can be expected to fall‘between these two.

A great deal of inte:esting information is contained in
the solution for £ of the modél equation. When the profiles
for the flow quantities within'the shock have converged, they
may be used to generate the distribution function, by evaluating |
the integral in (). Many fuch computations have been carried out,
and some tybical results aré shown in Figs. JSawd 6 .

It is seen that over a fair part of the shock layer the

distribution ié-strongly bimodal. The persistence of the "memory"
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of the supersonic stream is remarkable,and‘can be noticed even

at X = 15, where\P, u and T have reached their do&nstream
asymptotic values to one part in 1041 This persistence is due

to the longer free path of molecules traveling near the upstream
velocity u;, as discussed above; 1in fact the supersonic stream
behaves like a molecular beam being attenuated hy the molecules ine

the rest of velocity space. Qualitatively this behavior is not

unexpected and has been used in models for the shock structure,

A//‘z:&‘c*zéz«:{; 21

e.g., by Rott and W&é@eabﬁxguand Broadwell {bQJZ/[/

There is a similar effect on molecules coming from the
subsonic stream, but this is much weaker on account of the smaller
free paths.

: . . for

The Chapman-Enskog distribution function even szsfter M, < 2
certainly differs locally considerably from the correct f ‘but

does give the lower moments /4, u and T with good accuracy.

IV. EXPERIMENTS

Only the density profiles4of strong shocks have soxfar been
measured and the éccuraby which has been reached is still of the order
of + 5% at best. Two methods have been used, Hornig's ((}*J’JZ}/ method
in whlch the. intensity of llght refracted at nearly glancing
incidence to the shock surface is measured, and the scattering
of en electron beam which has been applied in ve;ious ways by a
numher of investigators. The most recent and ‘complete measurements
are the ones by Camac'(%?wg) and Russell (}%&lﬁ}.

Hornigfs method depends on the phase differences in the light
reflection from dlfferent regions of the shock profile and hence

requires shock thlcknesses of the-order of a wave length of. llght.

It has therefore the advantage of being applicable to thin shock
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waves and therefore to small shock tubes operating at high pressure.
It has the serious drawback of being very sensitive to the angle of.
incidence and hence to the'shock wave topography, which at high sthk
tube pressures can be quite complex (e.g.,.Ref.Af). It is surprieing
indeed that the measurements are consistent witﬁin a few per cent
and in good agreement with the other experiments.
The electron beam'methods simply use the fact that for
~sufficiently low beam intensity scattered intensity is proportional
to the number of scatterers. The intensity of the scattered beam is
either measured dlrectly like in Camac's ~experiments using a hlgh
- energy beam or obtalned by measuring the "absorption" of a low
energy beam like in the earlier measurements_of Duff et.al.,and
the recent ones of Russell. Due to the finite space and time
resolution of the electron beam the method is best applied to
thick shock waves and ﬁence requires.low"preSSure shock tgbee (or
.wind tunnels) and relatively large ones to keep boundary.layer
induced curvature effects small.
A typical plot of the maximum density slope thickness
versus Ml is given in Fig.ag.. As a comparison computations
based on the N-S approximation, B=G-K model and the Mott- Smlth
methods are shown. The agreement of the measurements w1th the B~-G-K.
model computation is as good as can be expected. The agreement with
‘the Mott-Smith computations is better>but then this is true for only
one particular and arbitrary way of applying the method.
The most characteristic trend in the B—G—KAprofiles, the "tail" of
the profile is very small for the density and probably anyway somewhat 3
exaggerated by the model, consequently more detailed comparison of
theory and experiment requires temperature, profile or distribution

function measurements.

'
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